
Security Assessment

Rat Alert
May 10th, 2022

Table of Contents

Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Centralization Risk in Proxy-admin Configuration

GLOBAL-02 : Centralization Related Risks

CFB-01 : inconsistency with White Paper

CHA-01 : Optimizable Transfer Patterns

CHA-02 : Optimizable Data Structure

CLA-01 : Users Do Not Pay For $link Usage

CON-01 : Flawed $Kitchen token implementation

CON-02 : Potential Reentrancy Attack

CON-03 : Optimizable Emit Events Design

CON-04 : Receive Token by `burn()`

CON-05 : Bad ERC721 Token Stake Method

CON-06 : Payment token by mint()

CON-07 : Risk of transaction revert due to Gas reaching limit

CON-08 : Improper Usage of `public` and `external` Type

CON-09 : Using Standardized Base64 Library

Appendix

Disclaimer

About

Rat Alert Security Assessment

Summary

This report has been prepared for Rat Alert to discover issues and vulnerabilities in the source code of the

Rat Alert project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by

industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Rat Alert Security Assessment

Overview

Project Summary

Project Name Rat Alert

Platform Ethereum

Language Solidity

Codebase https://github.com/ratalert/ratalert-contracts

Commit 57ce8c6666b5184d60c710227a2e5784aaa83c43

Audit Summary

Delivery Date May 10, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 3 0 0 0 2 0 1

Medium 1 0 0 0 0 0 1

Minor 9 0 0 1 0 2 6

Informational 2 0 0 0 0 1 1

Discussion 0 0 0 0 0 0 0

Rat Alert Security Assessment

https://github.com/ratalert/ratalert-contracts
https://github.com/ratalert/ratalert-contracts/tree/57ce8c6666b5184d60c710227a2e5784aaa83c43

Audit Scope

ID File SHA256 Checksum

CON contracts/Controllable.sol 69ad10ad0ecd184b39899edee1a6e182a6ae3b883d97bb0cd5d4a24b672503a2

TRA contracts/Traits.sol 68656679305bb1cfee19516ed8d143d353b2af2e1468833d078a90991140c888

ICU contracts/IClaim.sol d5aebff440e6ad8b430614ec929d2dbb72dadb13789af6feb12f0c7db3cc3dfb

CUB contracts/ControllableUpgradeable.sol efa80fc88b9a0ddbb6214d49a5efdbe2b790bccd96f079f72244a20852a5c58c

LSB contracts/LeStake.sol 8261e498ab8985b238462cfe7972fea472d56efec9df19c435da75b31a2cb03d

VRF contracts/VRFConsumer.sol 132389ee746d945b1e435d8a735136b62e53bb54a310fe20766f296d41686873

IVB contracts/IVenue.sol 7c1d776058e39dda15be8625f308499166e7d9211d65528f1bb33ec30eea138d

IPB contracts/IPaywall.sol 66b5ebbc50573506a1ac360193196f30fb21061de14a383699d956ce1129068e

EKB contracts/EntrepreneurKitchen.sol c4a9c605f291ee8c49a4e89f172af3ae196bb1c85d890105be2d1efa93a3d9e1

ICB contracts/ICharacter.sol f62d78423919613652cd24fa4f0777bc350a2a8c50c1904482d2c3e671fed4ea

CLA contracts/Claim.sol aa41c52a156bcfa57c1443e7c37ee5b976b9a8e462d76a39de7b2251f3f41a5c

KSB contracts/KitchenShop.sol 011008db9dcd03ed5f67747b19d97ca585936734afaf9ab1352808b3ce15052d

MIN contracts/Mint.sol 4d019daf5916beecf07c31a2d1ca00ad9f27c0db39da7f716cf8b1b727e98bbf

PRO contracts/Properties.sol 47949b52c403ef5ca52a1702a6802a08198b3b83ce4131e103e949bf3c3c3111

GFB contracts/GourmetFood.sol e1ad10588b20c31a49fac3d3048cde2ce97410f509a7b2df48b5f2a94eb577f6

CFB contracts/CasualFood.sol ecbda784e8ed8cb347361ddf93b1b608aad7c9139c3a5a4b5a093ceb696cb01c

VEN contracts/Venue.sol 7f5151c2042eb9e9455102aa5a66126838c4ad37adddff146355a822cc21eef8

CHA contracts/Character.sol cc08ae03915e3c139da1ea59cc6a5e5ed738bb2854dbacfcc33de0815815389c

GPB contracts/GenericPausable.sol 02ef95404a88e92c33235f709bc747699a5f3e2215c694b8ec1b8427a5f864a1

ITB contracts/ITraits.sol a428f54a7c6a5cc439913bcf71fc541bf30174a4e1f478db7aa05691ed0d579e

PAY contracts/Paywall.sol f0ed079e3915bc4648c619644daedf1b1dc601fa7a67665201d5c6cf594a5dcc

IPU contracts/IProperties.sol 585b84364910d51beae2866a922b54f4dcb5bd83c8fba788be527e521af545e9

Rat Alert Security Assessment

ID File SHA256 Checksum

VRC contracts/VRFCoordinatorMock.sol be7c9fb4752e8f264cb6ffd99cf1caf1904843e8a877b376b3af8118a1014741

FOO contracts/Food.sol e9dd3592d262a42b8d9bf9b4abb3f33f90143fc1486ae7f0be896244764a8469

LTM contracts/LinkTokenMock.sol ea00954295148334cf8ff22c8930b25f9b509a1fdbe9ed095f34987eb0138ca7

MSB contracts/McStake.sol 521bc531aece408cd0528d8f5f8b1a9eff3c6640645f4a9e5e46d3ed33d1de4c

GYM contracts/Gym.sol 71f06ffdcf9d9c60f8ad6cca6d7a1f3a03adac443f5a654f4a70d30cabcf377d

TSB contracts/TheStakehouse.sol e5db840a0dd2eb23a61c40cb86d09b0285bae08c5b56b0a0d48d2ab563f1122f

KIT contracts/Kitchen.sol e56a4437de938e34d6a9a9d72cc13bc072da27019ed51ba13575e706716917be

FFB contracts/FastFood.sol 9fe5b87b9774acada7dc3a0f804e8c74f28defe6aea53a41affd49dd81353711

IMB contracts/IMint.sol 099488e9b84b1ba9fb682eb5fb7370e349a085ecc0adde68cdcb7daedbad33c1

Rat Alert Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01
Centralization Risk In Proxy-

admin Configuration

Logical Issue,

Centralization / Privilege
Major Mitigated

GLOBAL-02 Centralization Related Risks Centralization / Privilege Major Mitigated

CFB-01 Inconsistency With White Paper Logical Issue Minor Resolved

CHA-01 Optimizable Transfer Patterns Volatile Code Major Resolved

CHA-02 Optimizable Data Structure Volatile Code Minor Resolved

CLA-01
Users Do Not Pay For $link

Usage
Logical Issue Minor Resolved

CON-01
Flawed $Kitchen Token

Implementation
Logical Issue Medium Resolved

CON-02 Potential Reentrancy Attack Logical Issue Minor Resolved

CON-03 Optimizable Emit Events Design Coding Style Minor Acknowledged

CON-04 Receive Token By burn() Logical Issue Minor Partially Resolved

CON-05
Bad ERC721 Token Stake

Method
Volatile Code Minor Resolved

CON-06 Payment Token By Mint() Logical Issue Minor Partially Resolved

CON-07
Risk Of Transaction Revert Due

To Gas Reaching Limit
Logical Issue Minor Resolved

Rat Alert Security Assessment

15
Total Issues

Critical 0 (0.00%)

Major 3 (20.00%)

Medium 1 (6.67%)

Minor 9 (60.00%)

Informational 2 (13.33%)

Discussion 0 (0.00%)

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648956325227
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649390475338
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648956086085
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648954393229
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649089479363
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648980420909
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649391561215
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648955780491
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648971696877
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648976016839
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649100293241
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649118481136
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1651675237793

ID Title Category Severity Status

CON-08
Improper Usage Of public

And external Type
Gas Optimization Informational Partially Resolved

CON-09
Using Standardized Base64

Library
Coding Style Informational Resolved

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=16489537844443
https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649091027261

GLOBAL-01 | Centralization Risk In Proxy-admin Configuration

Category Severity Location Status

Logical Issue, Centralization / Privilege Major Mitigated

Description

All of Rat Alter contracts that carry game mechanics are upgradeable, this idea behind this is to enable the

RatAlert DAO to agree upon and change parameters of the game if required,and the contracts of the project

are deployed with proxy . Apart from the logic in the specific logic contract, the contracts deployed via

proxies can add additional permission controls or other logic. Since the proxy contract is not in the audit

scope, it will be treated as a black box and assumed functional correctness. However, there will be potential

centralization risk in the proxy:

The admin of the proxy contract has the authority to execute any delegate call.

Proxy-admin does not make a reasonable configuration in any code file.

Any compromise to the admin account may allow the hacker to take advantage of this and users' assets

may suffer loss.

Recommendation

Making more sense of the Proxy-admin configuration

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level

in terms of short-term, long-term and permanent:

Above all

Complete proxy-admin configuration operations in the code.

Short Term:

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648956325227

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the

public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Rat Alert Security Assessment

GLOBAL-02 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major Mitigated

Description

In the contract Traits the role _owner has authority over the functions shown in the diagram below.

Authenticated Role

Function

State Variables

Function Calls

Function State Variables

Function Calls

_owner

setCharacter

uploadTraits

character

ICharacter_1

traitData

Trait_2

In the contract TheStakehouse the role _owner has authority over the functions shown in the diagram

below.

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649390475338

Authenticated Role Function

State Variables

_owner configure

foodTokenMaxSupply

dailyChefEarnings

ratTheftPercentage

vestingPeriod

accrualPeriod

dailySkillRate

dailyFreakRate

dailyIntelligenceRate

dailyBodyMassRate

minEfficiency

chefsPerKitchen

chefEfficiencyMultiplier

ratEfficiencyMultiplier

ratEfficiencyOffset

maxClaimsPerTx

In the contract Food the role controllers has authority over the functions shown in the diagram below.

Authenticated Role

Function Function Calls

Function Function Calls
controllers

mint

burn

_mint_2

_burn_2

In the contract ControllableUpgradeable the role _owner has authority over the functions shown in the

diagram below.

Rat Alert Security Assessment

Authenticated Role

Function State Variables

Function State Variables

Function State Variables

_owner

controller

addController

removeController

controllers

controllers

controllers

In the contract Controllable the role _owner has authority over the functions shown in the diagram below.

Authenticated Role

Function State Variables

Function State Variables

Function State Variables

_owner

controller

addController

removeController

controllers

controllers

controllers

In the contract Claim the role _owner has authority over the functions shown in the diagram below.

Rat Alert Security Assessment

Authenticated Role

Function

State Variables

Function Calls

Function

State Variables

Function Calls

Function

State Variables

_owner

setVrfParams

addVenue

removeVenue

vrfCoordinator

link

keyHash

fee

LinkTokenInterface_1

venues

IVenue_1

venues

In the contract Claim the role controllers has authority over the functions shown in the diagram below.

Rat Alert Security Assessment

Authenticated Role Function

State Variables

Function Calls

controllers requestRandomNumber

this

link

fee

requestId

keyHash

vrfRequests

balanceOf_1

requestRandomness_2

VRFStruct_0

In the contract Character the role _owner has authority over the functions shown in the diagram below.

Authenticated Role

Function State Variables

Function State Variables

Function Calls

_owner

configure

setVenues

maxTokens

gen0Tokens

venues

push_1

In the contract Character the role controllers has authority over the functions shown in the diagram

below.

Rat Alert Security Assessment

Authenticated Role Function

State Variables

Function Calls

controllers updateCharacter

tokenTraits

efficiencyValue

toleranceValue

eventName

properties

getEventUpdates_6

In the contract VRFConsumer the role _owner has authority over the functions shown in the diagram below.

Authenticated Role Function

State Variables

Function Calls
_owner withdrawLink

link

_msgSender_0

transfer_2

In the contract VRFConsumer the role vrfCoordinator has authority over the functions shown in the

diagram below.

Rat Alert Security Assessment

Authenticated Role Function

State Variables

Function Calls

vrfCoordinator rawFulfillRandomness

msg

vrfCoordinator

fulfillRandomness_2

In the contract Properties the role _owner has authority over the functions shown in the diagram below.

Authenticated Role Function

State Variables

_owner configure

disasterEfficiencyMinimumChef

disasterEfficiencyMinimumRat

disasterEfficiencyLossChef

disasterEfficiencyLossRat

disasterToleranceLossChef

disasterToleranceLossRat

mishapEfficiencyMinimumChef

mishapEfficiencyMinimumRat

mishapEfficiencyLossChef

mishapEfficiencyLossRat

mishapToleranceLossChef

mishapToleranceLossRat

In the contract Paywall the role _owner has authority over the functions shown in the diagram below.

Rat Alert Security Assessment

Authenticated Role

Function

State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

_owner

configure

toggleWhitelist

addToWhitelist

removeFromWhitelist

addToFreeMints

removeFromFreeMints

mintPrice

whitelistBoost

maxMintsPerTx

gen1PriceTier0

gen1PriceTier1

gen1PriceTier2

gen1PriceTier3

onlyWhitelist

whitelist

whitelist

freeMints

freeMints

In the contract Paywall the role controllers has authority over the functions shown in the diagram below.

Rat Alert Security Assessment

Authenticated Role Function

State Variables

Function Calls

controllers handle

maxMintsPerTx

boost

mintPrice

onlyWhitelist

freeMints

whitelist

whitelistBoost

i

fastFood

mintCost_3

burn_2

In the contract Mint the role _owner has authority over the functions shown in the diagram below.

Rat Alert Security Assessment

Authenticated Role

Function

State Variables

Function Calls

Function State Variables

Function Calls

_owner

setVrfParams

setCharacter

vrfCoordinator

link

keyHash

fee

LinkTokenInterface_1

character

ICharacter_1

In the contract Mint the role controllers has authority over the functions shown in the diagram below.

Authenticated Role Function

State Variables

Function Calls

controllers requestRandomNumber

this

link

fee

requestId

keyHash

vrfRequests

balanceOf_1

requestRandomness_2

VRFStruct_0

Rat Alert Security Assessment

In the contract McStake the role _owner has authority over the functions shown in the diagram below.

Authenticated Role Function

State Variables

_owner configure

foodTokenMaxSupply

dailyChefEarnings

ratTheftPercentage

vestingPeriod

accrualPeriod

dailySkillRate

dailyFreakRate

dailyIntelligenceRate

dailyBodyMassRate

chefEfficiencyMultiplier

ratEfficiencyMultiplier

ratEfficiencyOffset

maxClaimsPerTx

In the contract LeStake the role _owner has authority over the functions shown in the diagram below.

Rat Alert Security Assessment

Authenticated Role Function

State Variables

_owner configure

foodTokenMaxSupply

dailyChefEarnings

ratTheftPercentage

vestingPeriod

accrualPeriod

dailySkillRate

dailyFreakRate

dailyIntelligenceRate

dailyBodyMassRate

minEfficiency

chefsPerKitchen

chefEfficiencyMultiplier

ratEfficiencyMultiplier

ratEfficiencyOffset

maxClaimsPerTx

In the contract KitchenShop the role _owner has authority over the functions shown in the diagram below.

Rat Alert Security Assessment

Authenticated Role

Function

State Variables

Function State Variables

Function Calls

_owner

configure

uploadImage

maxTokens

maxMintsPerTx

minSkill

priceTier0

priceTier1

priceTier2

priceTier3

priceTier4

tokenSupply

kitchenData

KitchenData_2

In the contract Gym the role _owner has authority over the functions shown in the diagram below.

Authenticated Role Function

State Variables

_owner configure

vestingPeriod

accrualPeriod

dailyFreakRate

dailyBodyMassRate

maxClaimsPerTx

Rat Alert Security Assessment

In the contract GenericPausable the role _owner has authority over the functions shown in the diagram

below.

Authenticated Role

Function Function Calls

Function Function Calls
_owner

pause

unpause

_pause_0

_unpause_0

Any compromise to the privileged account may allow the hacker to take advantage of this authority and

update the sensitive settings and execute sensitive functions of the project.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level

in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

Rat Alert Security Assessment

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the

public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

Noted: Recommend considering the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Rat Alert Security Assessment

CFB-01 | Inconsistency With White Paper

Category Severity Location Status

Logical Issue Minor contracts/CasualFood.sol: 7~8 Resolved

Description

The white paper describes the supply of CFOOD as 10,000,000, while in the code this number is

100,000,000 (10 times larger).

contractcontract CasualFoodCasualFood isis Food Food {{

 constructorconstructor(()) FoodFood(("CasualFood""CasualFood",, "CFOOD""CFOOD",, 100100,,000000,,000000 ** 1010 **** 1818)) {{}}

}}

Recommendation

Follow the white paper to implement the code and modify the supply to 10,000,000

Alleviation

[CertiK] : The team heeded the advice and fixed the issue in the commit: 4309f688

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648956086085

CHA-01 | Optimizable Transfer Patterns

Category Severity Location Status

Volatile Code Major contracts/Character.sol: 69~70 Resolved

Description

There is a possibility of exception throwing in dao.transfer, which can make a dos attack.

 ifif ((msgmsg..value value >> 00)) {{

 dao dao..transfertransfer((msgmsg..valuevalue));; // Transfer to Gnosis Safe// Transfer to Gnosis Safe

 }}

Specifically, the normal function of character.sol can be affected by dao address.

Exploit

For example, we can make the dao contract unable to accept certain eth transfers, thus preventing the

character.sol contract from performing some of the mint operations.

Recommendation

We recommend to use PullPayment model to transfer value.

Alleviation

[Rat Alert] : Cannot use OpenZeppelin's PullPayments implementation because it would break the

bytecode size limit. Used a custom implementation.

Commit: 8d4c07b5

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648954393229

CHA-02 | Optimizable Data Structure

Category Severity Location Status

Volatile Code Minor contracts/Character.sol: 142~150, 156~161 Resolved

Description

 functionfunction setVenuessetVenues((addressaddress[[]] memorymemory _venues _venues)) externalexternal onlyOwner onlyOwner {{

 deletedelete venues venues;;

 forfor ((uintuint i i == 00;; i i << _venues _venues..lengthlength;; i i++++)) {{

 venues venues..pushpush((_venues_venues[[ii]]));;

 }}

 }}

For the venues in Character, the contract does not use a hashmap to store them, but an array of addresses.

This is indeed convenient for off-chain applications to get venues information via eth_getStorageAt()[RPC].

However, this is not in line with the common development model of solidity, and will lead to various serious

security problems when the project growth and Owner misuse, as follows.

Possible Impact

The growing venues array will lead to GAS reaching the upper limit causing DOS risk, which may lead to

ERC721 tokens not being transferred in RatAlter. And because the venues removal operation is not

available, the cost of fixing the problem is extremely high

 functionfunction transferFromtransferFrom((addressaddress fromfrom,, addressaddress to to,, uint256uint256 tokenId tokenId)) publicpublic virtual virtual

override override {{

 boolbool wl wl == falsefalse;;

 forfor ((uintuint i i == 00;; i i << venues venues..lengthlength;; i i++++)) {{

 wl wl == wl wl |||| _msgSender_msgSender(()) ==== venues venues[[ii]];;

 }}

 ifif ((!!wlwl))

 requirerequire((_isApprovedOrOwner_isApprovedOrOwner((_msgSender_msgSender(()),, tokenId tokenId)),, "ERC721: transfer caller is not"ERC721: transfer caller is not

owner nor approved"owner nor approved"));;

 _transfer_transfer((fromfrom,, to to,, tokenId tokenId));;

 }}

Recommendation

Using a hashmap to store the "venues" information, you can use events to record the "venues" information

that has been stored and the removal to supply the application off-chain.

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649089479363

Alleviation

[Rat Alert] : Replaced the entire venues array with a single venue address.

Commit: 10d55080

Rat Alert Security Assessment

CLA-01 | Users Do Not Pay For $link Usage

Category Severity Location Status

Logical Issue Minor contracts/Claim.sol: 61~62 Resolved

Description

Users only need to use the native token mint ERC721 tokens at the beginning of the game and pay nothing

beyond the transaction fee after that.

6161 functionfunction requestRandomnessrequestRandomness((bytes32bytes32 _keyHash _keyHash,, uint256uint256 _fee _fee)) internalinternal returnsreturns

((bytes32bytes32 requestId requestId)) {{

6262 link link..transferAndCalltransferAndCall((vrfCoordinatorvrfCoordinator,, _fee _fee,, abi abi..encodeencode((_keyHash_keyHash,,

USER_SEED_PLACEHOLDERUSER_SEED_PLACEHOLDER))));;

6363 uint256uint256 vRFSeed vRFSeed == makeVRFInputSeedmakeVRFInputSeed((_keyHash_keyHash,, USER_SEED_PLACEHOLDER USER_SEED_PLACEHOLDER,,

addressaddress((thisthis)),, nonces nonces[[_keyHash_keyHash]]));;

6464 nonces nonces[[_keyHash_keyHash]] == nonces nonces[[_keyHash_keyHash]] ++ 11;;

6565 returnreturn makeRequestIdmakeRequestId((_keyHash_keyHash,, vRFSeed vRFSeed));;

6666 }}

However, any call to requestRandomNumber() consumes link tokens, which gives malicious users the

possibility to attack the project owner.

A malicious user can consume the project owner's link tokens by using FFOOD tokens to generate ERC721

tokens or by pledging ERC721 tokens. And in the process, they can also harvest more FOOD tokens

without paying anything other than transaction fees.

A malicious user may benefit from this process as follows.

1. DOS contracts that prevent them from performing claim operations while increasing the benefit of

their own claims.

2. consume the project's LINK tokens, causing financial losses to the project.

Recommendation

Please consider a mechanism where the link tokens are paid by the user, or guarantee that the user has to

pay a suitable price to consume the link tokens.

Alleviation

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648980420909

[Rat Alert] : Vendor.claimMany() now requires a a claim fee. However, skipping Character.mint() since it

requires a payment anyway.

Commit: 64f20f98

Rat Alert Security Assessment

CON-01 | Flawed $Kitchen Token Implementation

Category Severity Location Status

Logical

Issue
Medium

contracts/Venue.sol: 77~80, 149~155; contracts/EntrepreneurKitchen.sol: 19

~22
Resolved

Description

The kitchen token is a credential provided to chefs to access LeStake as well as TheStakeHouse. However,

these tokens are not stake in contracts when it is being used. It is only to check the user balance at the time

of stakeChef and claimChef. This leads to the following unintended actions that can be made.

1. User A mint a certain amount of $kitchen tokens first, and does a stakeChef operation.

2. User A transfers $kitchen to B

3. B performs the stakechef operation, and then transfers $kitchen to A

4. A performs claimchef operation in the future and transfers $kitchen to B

5. B performs the claimchef operation

In this way, a $Kitchen is used twice in a time period, ultimately increasing the revenue of $XFOOD tokens

Recommendation

Stake $kitchen tokens in contracts such as Lestake when using it.

Alleviation

[Rat Alert] : Kitchens now require approval and staking in the KitchenUsage contract (ERC1155 receiver)

as long as chefs are staked.

Commit: 4493b12c

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649391561215

CON-02 | Potential Reentrancy Attack

Category Severity Location Status

Logical

Issue
Minor

contracts/KitchenShop.sol: 7~8, 95~99; contracts/Character.sol: 6~7, 88~89; contr

acts/Venue.sol: 71~72, 190~191, 225~226
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another

untrusted contract before resolving any effects. If the attacker can control the untrusted contract, they can

make a recursive call back to the original function, repeating interactions that would have otherwise not run

after the external call resolved the effects.

And there are numerous checkReceived checks in the ERC721 contract as well as in the ERC1155

contract, which can lead to re-entry problems and eventually to unpredictable logic errors.

requirerequire((txtx..origin origin ==== _msgSender_msgSender(()),, "EOA only""EOA only"));;

The use of msg.sender==tx.orign does prevent some reentrant attacks, but we also see many places where

this check is not present and can certainly cause reentrants, especially in the context of many functions that

do not adhere to CEI principles.

 ifif ((unstakeunstake)) {{

 character character..safeTransferFromsafeTransferFrom((addressaddress((thisthis)),, sender sender,, tokenId tokenId,, """"));; // Send Chef back// Send Chef back

to owner to owner

 deletedelete chefs chefs[[tokenIdtokenId]];;

 totalChefsStaked totalChefsStaked ----;;

 }}

Reentrant attacks can take many forms, and it should to eliminate the possibility of reentrants in all

functions, even if they sometimes do not appear to be harmful at first glance.

Recommendation

We recommend

1.using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts

2.applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned

functions to prevent reentrancy attack.

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648955780491
https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Alleviation

[Rat Alert] :

Contracts have been refactored to adhere to CEI principles.

Introduced "EOA only" checks in those functions that users interact with. All other functions either

require onlyOwner, onlyDAO or onlyController.

Aside from ChainLink VRM, all contracts are owned and can be considered trusted.

Commit: a013b732

Rat Alert Security Assessment

CON-03 | Optimizable Emit Events Design

Category Severity Location Status

Coding

Style
Minor

contracts/KitchenShop.sol: 57~74, 158~163; contracts/Mint.sol: 63~68, 193~1

95; contracts/Traits.sol: 196~198, 205~213; contracts/Character.sol: 54~57, 1

03~110, 156~161; contracts/Food.sol: 25~27, 34~36; contracts/ControllableU

pgradeable.sol: 22~24, 30~34, 40~44; contracts/VRFConsumer.sol: 51~54, 6

1~63; contracts/Gym.sol: 22~34; contracts/Migrations.sol: 16~18; contracts/G

enericPausable.sol: 9, 10; contracts/Claim.sol: 47~52, 86~90, 96~100; contra

cts/McStake.sol: 31~53; contracts/Controllable.sol: 7~8, 22~24, 30~34, 40~44

; contracts/LeStake.sol: 35~61; contracts/Properties.sol: 31~45; contracts/Pay

wall.sol: 36~44, 50~52; contracts/TheStakehouse.sol: 35~61

Acknowledged

Description

Events are an important implementation for Ether to provide contract operation info to the off-chain and

provide data for the off-chain monitoring facility.Events should be designed to ensure coverage enough as

well as difficult collisions.

But in the rat alter we found the following problems with the event design:

1. The function that affects the status of sensitive variables should be able to emit events as

notifications to all of the function of [Controllable.sol] [Character.sol].

addController()

removeController()

setVenues() ...

2. The output event information should give a more complete picture of the chain, There should be no

ambiguity about different executions but outputting the same event.�That is, a collision occurs�

 functionfunction _stakeRat_stakeRat((addressaddress account account,, uint256uint256 tokenId tokenId)) internalinternal whenNotPaused whenNotPaused {{

 emitemit TokenStakedTokenStaked((tokenIdtokenId,, account account,, foodTokensPerRat foodTokensPerRat));;//Can't tell if it's chefs or//Can't tell if it's chefs or

rats.rats.

 }}

 functionfunction _stakeChef_stakeChef((addressaddress account account,, uint256uint256 tokenId tokenId)) internalinternal whenNotPaused whenNotPaused {{

 emitemit TokenStakedTokenStaked((tokenIdtokenId,, account account,, block block..timestamptimestamp));;//Can't tell if it's chefs or//Can't tell if it's chefs or

rats.rats.

 }}

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648971696877

Recommendation

Consider adding events for important actions, and emit them in the function, and ensure that the meaning of

the event is clear.

Alleviation

[Rat Alert] : Character & contracts that inherit from Venue are close to the bytecode size limit. Although

we would love to add a lot more events, we need to stick to only a few that are critical for operation.

Rat Alert Security Assessment

CON-04 | Receive Token By burn()

Category Severity Location Status

Logical Issue Minor contracts/KitchenShop.sol: 95~99; contracts/Paywall.sol: 141~142 Partially Resolved

Description

In the following code snippet:

 functionfunction handlehandle((addressaddress sender sender,, uint8uint8 amount amount,, uint256uint256 msgValue msgValue,, uint16uint16 minted minted,, uint256uint256

maxTokensmaxTokens,, uint256uint256 gen0Tokens gen0Tokens)) externalexternal onlyController onlyController returnsreturns ((int8int8 boost boost)) {{

 ifif ((totalCost totalCost >> 00)) fastFood fastFood..burnburn((sendersender,, totalCost totalCost));;

 }}

It is very unreasonable to use burn mechanism in a Receive token function that has ERC20Capped. It

would cause the following security risk.

1. causing a severe shortage of token supply. It may cause the project to run out of FFood or CFood

during its lifetime, causing some of the project's functions to fail, such as the mint operation of

ERC721 tokens.

2. Amplifies the impact of centralization issues. The burn mechanism is a high authority operation

that does not require the authority of the authenticated token owner. This operation is given to all

Controllers, which also contain Upgradeable contracts [Paywall, LeStake, etc.], and the Upgradability

of these contracts may further aggravate the centralization problem of the project.

Recommendation

It is recommended to use the normal token transfer mechanism to receive ERC20 tokens, e.g.

safetransferfrom()

Alleviation

[Rat Alert] : Replaced Controllable with OpenZeppelin's AccessControl to better protect the ERC20

contracts.

Commit: 7cc6e807

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1648976016839

CON-05 | Bad ERC721 Token Stake Method

Category Severity Location Status

Volatile Code Minor contracts/Venue.sol: 69~74; contracts/Character.sol: 142~150 Resolved

Description

In the venues contract running the ERC721 token transfer, token owner authentication is implemented by

venues contract, and for ERC721 contract it is not appropriate to skip the _isApprovedOrOwner() check for

transactions sent from venues. This implementation exacerbates the project coupling level and makes the

project security risk higher. This increases the degree of project centrality.

Recommendation

Please use _isApprovedOrOwner() check for venues as well, and try to have the user provide ERC721 to

venues via approve first, and then have the contract transfer it later

Alleviation

[Rat Alert] : Got it. All contracts now require approval.

Commit: 81dec95f

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649100293241

CON-06 | Payment Token By Mint()

Category Severity Location Status

Logical

Issue
Minor

contracts/TheStakehouse.sol: 68~70; contracts/McStake.sol: 60~62; cont

racts/LeStake.sol: 68~70
Partially Resolved

Description

 functionfunction _mintFoodToken_mintFoodToken((addressaddress sender sender,, uint256uint256 amount amount)) internalinternal override override {{

 foodToken foodToken..mintmint((sendersender,, amount amount));;

 }}

It is dangerous to use mint mechanism in a Payment function. It may cause the following results.

1. The risk of breaking the economic model of the FOOD token as described in the white paper.

This may further result in users not being able to claim their ERC721token.

2. Amplifies the impact of centralization issues. The mint mechanism is a high authority operation

that does not require the authority of the authenticated token owner. This operation is given to all

Controllers, which also contain Upgradeable contracts, and the Upgradability of these contracts may

further aggravate the centralization problem of the project.

Recommendation

It is recommended to mint enough FOOD tokens in the initial phase of the project and distribute them

according to the economic model, and use safeTransferFrom() to make payments.

It is also recommended to add some simple ERC721 withdrawal mechanism to prevent the problem of

permanent ERC721 staking.

Alleviation

[Rat Alert] : Replaced Controllable with OpenZeppelin's AccessControl to better protect the ERC20

contracts.

Commit: 7cc6e807

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649118481136

CON-07 | Risk Of Transaction Revert Due To Gas Reaching Limit

Category Severity Location Status

Logical Issue Minor contracts/Character.sol: 65~94; contracts/Venue.sol: 141~166 Resolved

Description

Be aware of the risk of fullfillClaimMany reaching the gas limit due to too many tokenIDs, which will lead to

revert of fullfillClaimMany transactions. The same problem can occur in all functions that call

requestRandomNumber such as mint() in Character.

 functionfunction mintmint((uint8uint8 amount amount,, boolbool stake stake)) externalexternal payablepayable whenNotPaused whenNotPaused {{

 theMint theMint..requestRandomNumberrequestRandomNumber((_msgSender_msgSender(()),, amount amount,, stake stake,, boost boost));;

 }}

 functionfunction claimManyclaimMany((uint16uint16[[]] calldatacalldata tokenIds tokenIds,, boolbool unstake unstake)) externalexternal virtual virtual payablepayable

whenNotPaused whenNotPaused {{

 bytes32bytes32 requestId requestId == claim claim..requestRandomNumberrequestRandomNumber((_msgSender_msgSender(()),, tokenIds tokenIds,, unstake unstake));;

 }}

 functionfunction fulfillClaimManyfulfillClaimMany((IClaimIClaim..VRFStruct VRFStruct memorymemory v v,, uint256uint256 randomness randomness)) externalexternal

virtual whenNotPaused virtual whenNotPaused {{

 //spend many gas here//spend many gas here

 requirerequire((msgmsg..sender sender ==== addressaddress((claimclaim)),, "Only Claim can fulfill""Only Claim can fulfill"));;

 requirerequire((claimRequestsclaimRequests[[vv..requestIdrequestId]]..length length >> 00,, "Claim request not found""Claim request not found"));;

 uint16uint16[[]] memorymemory tokenIds tokenIds == claimRequests claimRequests[[vv..requestIdrequestId]];;

 deletedelete claimRequests claimRequests[[vv..requestIdrequestId]];;

 uint256uint256 owed owed == 00;;

 forfor ((uintuint i i == 00;; i i << tokenIds tokenIds..lengthlength;; i i++++)) {{

 uint256uint256 randomVal randomVal == uint256uint256((keccak256keccak256((abiabi..encodeencode((randomnessrandomness,, i i))))));;

 boolbool space space == _checkSpace_checkSpace((vv..sendersender,, 00));;

 ifif ((isChefisChef((tokenIdstokenIds[[ii]]))))

 owed owed +=+= _claimChef_claimChef((tokenIdstokenIds[[ii]],, v v..sendersender,, !!space space |||| v v..unstakeunstake,, !!spacespace,,

randomValrandomVal));;

 elseelse

 owed owed +=+= _claimRat_claimRat((tokenIdstokenIds[[ii]],, v v..sendersender,, v v..unstakeunstake,, !!spacespace,, randomVal randomVal));;

 forfor ((uintuint j j == 00;; j j << stakers stakers[[vv..sendersender]]..lengthlength;; j j++++)) {{

 ifif ((stakersstakers[[vv..sendersender]][[jj]] ==== tokenIds tokenIds[[ii]])) {{

 stakers stakers[[vv..sendersender]][[jj]] == stakers stakers[[vv..sendersender]][[stakersstakers[[vv..sendersender]]..length length -- 11]];;

 stakers stakers[[vv..sendersender]]..poppop(());;

 }}

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1651675237793

 }}

 }}

 ifif ((owed owed >> 00)) {{

 _mintFoodToken_mintFoodToken((vv..sendersender,, owed owed));;

 }}

 }}

Recommendation

It is recommended to check the number of tokenids on the front-end and to warn users in the website not to

provide more than the recommended number of tokenids at once.

Alleviation

[Rat Alert] : we noticed that already and did one better: Both Venue.claimMany() and Character.mint() via

Paywall.handle() ensure that the limit is not violated.

Rat Alert Security Assessment

CON-08 | Improper Usage Of public And external Type

Category Severity Location Status

Gas

Optimization
Informational

contracts/KitchenShop.sol: 122; contracts/Traits.sol: 55; contrac

ts/Character.sol: 103, 142; contracts/Venue.sol: 342; contracts/

Migrations.sol: 16; contracts/Properties.sol: 128

Partially Resolved

Description

public functions that are never called by the contract could be declared as external . external functions

are more efficient than public functions.

Recommendation

Consider using the external attribute for public functions that are never called within the contract.

Alleviation

[Rat Alert] : Cannot change the following:

Character.transferFrom() because it overrides an OpenZeppelin function

KitchenShop.uri() because it overrides an OpenZeppelin function

Changed the remaining ones:

Character.updateCharacter()

Migrations.setCompleted()

Properties.getEventUpdates()

Traits.tokenURI()

Venue.getProperties()

Commit: bb104ea2 & cd2bfdf7

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=16489537844443

CON-09 | Using Standardized Base64 Library

Category Severity Location Status

Coding Style Informational contracts/KitchenShop.sol: 169; contracts/Traits.sol: 218~251 Resolved

Description

Traits is using the Base64 library implementation written by Brech Devos, which is undoubtedly a widely

used and borrowed library, but as of 14 Sep 2021 Openzeppelin has implemented a base64 library code by

borrowing from Brech Devos. It was equipped with more standardized documentation and testing efforts, as

well as some optimizations. For better maintenance and modularity later in the project. It is recommended to

use Openzeppelin's Base64 library, as it has a larger community to maintain it and is equipped with better

safeguards such as documentation and bug bounties.

Recommendation

Use the base64 library code of openzeppelin.

Alleviation

[Rat Alert] : Now using the OpenZeppelin's base64 implementation, had to upgrade

@openzeppelin/contracts & @openzeppelin/contracts-upgradeable.

Commit: 0b379a42

Rat Alert Security Assessment

https://acc.audit.certikpowered.info/project/e2678f30-98ab-11ec-b5a1-a18b61653b4a/report?fid=1649091027261

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in combination

with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make the

codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under the

specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Rat Alert Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

condentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by

the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes, nor

may copies be delivered to any other person other than the Company, without CertiK’s prior written consent

in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any “product”

or “asset” created by any team or project that contracts CertiK to perform a security assessment. This report

does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the technologies proprietors, business, business model or

legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and

blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that

each company and individual are responsible for their own due diligence and continuous security. CertiK’s

goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and

consistently changing technologies, and in no way claims any guarantee of security or functionality of the

technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development.

You agree that your access and/or use, including but not limited to any services, reports, and materials, will

be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are emergent

technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could

include false positives, false negatives, and other unpredictable results. The services may access, and

depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER

MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND

Rat Alert Security Assessment

“AS AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO

THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO

THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE

FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND

ALL WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT

LIMITING THE FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES,

THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER

PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH

ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE

OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK

PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND

THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS

OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY

STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES

ANY REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE

ACCURACY, RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED

THROUGH THE SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY

ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR

DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY

PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM

CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER

MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED

TO, ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

Rat Alert Security Assessment

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY

OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES

OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT

REPORTS OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF

FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Rat Alert Security Assessment

About

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and correctness

of smart contracts and blockchain-based protocols. Through the utilization of our world-class technical

expertise, alongside our proprietary, innovative tech, we’re able to support the success of our clients with

best-in-class security, all whilst realizing our overarching vision; provable trust for all throughout all facets of

blockchain.

Rat Alert Security Assessment

